

Blitz-starting QUIC connections

Rapidly starting QUIC connections

Jan Rüth, Konrad Wolsing, Martin Serror, Klaus Wehrle, Oliver Hohlfeld

https://www.comsys.rwth-aachen.de/

Diepenbeek, Belgium / QUIC-SYMPOSIUM, May 2019

• Short connections are often stuck in slow start

► Worse: They often exit it too early

- Blue flow exits slow start early \rightarrow slow fairness convergence and bad performance
- Even regular slow start impeds performance

• Slow start should probe the bandwidth to not cause a collapse

It fails to discover its fair share

• One must induce congestion to others to gain bandwidth

- Push more packets into the network
- But at a reasonable pace

• Skip slow start at connection start and go to congestion avoidance

Bootstrap the congestion window with an appropriate rate

• Let the client signal the rate that it thinks it can handle

- Knows other parallel flows
- Knows access technology

How has this been done before?

- Statically increase the initial congestion window [Dukkipati et al. CCR10]
 - IW10 does not fit all networks
- Riptide [Flores et al., ICDCS16], SmartIW [Nie et al., IWQOS18]
 - "Learn" IW and customize from past connections
- Quickstart: Path signaling of bandwidth [Floyd et al., RFC 4782]
 - Hard to deploy
- Mobile Throughput Guidance [Jain et al., draft-flinck-mobile-throughput-guidance-04.txt]
 - Authenticated TCP option inserted on path with bandwidth information
- Jumpstart: Simply paces out all available packets [Liu et al. PFLD07]
 - RWIN used to signal bandwidth
- Halfback: Jumpstart but with opportunistic retrans. [Li et al., CoNEXT15]
 - Better than RACK?

• We assume congestion to happen at the network edge

Not always true

• At the edge

- Wireless: Use current coding scheme to calculate PHY-rate (available on all popular OSes)
- Mobile: Using band, bandwidth, modulation and MIMO calculation of LTE PHY-rate
- Ethernet connected at home
 - Past maximum speed measurements
 - Ask local gateway, e.g., TR-064 allows to determine the available link-speed to the next hop

• We did not investigate how well any of these work!

We will look at what happens if we have a bad estimate

Modified Google QUIC

- Clients can signal bandwidth as a transport parameter in the initial packet
- Server uses bandwidth and RTT sample to calculate congestion window and goes to CA
- Compete against an unmodified Google QUIC
 - Cubic congestion control with IW32 and pacing (0.5 RTT in SS, 0.75 RTT in CA)
- We used Mininet to emulate various network conditions
 - We know the true available bandwidth, buffers and delays...
- We measure flow completion times for
 - 70kB, average size of Google landing page in 2017
 - 2MB, video chunk or whole website
 - 10MB, larger files or objects

- We announce 0.5, 1.0, 1.5, 3.0, 4.0x the true bandwidth to the server
- We compare against a single competing elephant flow that is already utilizing the link
- We repeat 30 times to gain statistical significance (we show 95% conf.)
 - We perform an ANOVA test to see if there is statistical difference

		DSL slow						DSL fast						3G						LTE						
		RTT=50 ms, BW=25 MBit, BUF=50 ms (104 pkt)						RTT=50 ms, BW=50 MBit, BUF=50 ms (208 pkt)						RTT=90 ms, BW=8 MBit, BUF=200 ms (140 pkt)						RTT=70 ms, BW=32 MBit, BUF=200 ms (560 pkt)						
		70I	70KB		2MB		10MB		70KB		2MB		10MB		70KB		2MB		10MB		70KB		2MB		10MB	
		FCT	Loss	FCT	Loss	FCT	Loss	FCT	Loss	FCT	Loss	FCT	Loss	FCT	Loss	FCT	Loss	FCT	Loss	FCT	Loss	FCT	Loss	FCT	Loss	
ate		x1.3	x4.0	x1.1	x1.5	x1.0	x1.2	x1.0	x1.5	x1.4	x1.3	x1.2	x1.6	x1.1	x3.8	x1.0	x3.5	x1.0	x2.0	x1.8	x1.1	x1.5	x1.9	x1.1	x1.3	
	0.5	+47ms	-13	-170ms	-10	-104ms	-8	-3ms	-3	-407ms	+9	-905ms	+17	-51ms	-16	+454ms	-22	+979ms	-20	-214ms	0	-1.9s	+5	-1.4s	-4	
		x1.0	x1.0	x1.4	x3.4	x1.2	x2.7	x1.0	x1.9	x1.9	x7.2	x1.5	x7.4	x1.0	x1.0	x1.3	x1.2	x1.1	x1.2	x1.8	x2.2	x2.5	x9.5	x1.6	x3.1	
ima	1.0	+2ms	0	-562ms	+69	-1.2s	+79	+6ms	+7	-664ms	+176	-1.7s	+195	+4ms	+1	-2.2s	+7	-2.3s	+9	-223ms	+2	-3.4s	+45	-6.4s	+33	
est	1.5	x1.1	x1.3	x1.6	x7.5	x1.3	x5.8	x1.1	x2.2	x2.2	x15.6	x1.7	x15.8	x1.0	x1.3	x1.5	x2.4	x1.2	x2.2	x1.9	x3.2	x3.0	x26.8	x2.1	x8.8	
≥	1.0	+19ms	+5	-744ms	+190	-1.6s	+219	+10ms	+10	-773ms	+412	-2.0s	+449	+27ms	+7	-3.2s	+45	-4.1s	+47	-235ms	+3	-3.8s	+137	-8.7s	+122	
ģ	2.0	x1.2	x2.0	x1.9	x25.2	x1.4	x17.0	x1.1	x2.9	x2.8	x37.8	x2.1	x42.4	x1.1	x1.8	x1.9	x8.4	x1.3	x6.8	x2.1	x6.5	x3.9	x114.5	x2.9	x44.2	
x	5.0	+40ms	+17	-939ms	+708	-2.2s	+735	+10ms	+16	-893ms	+1036	-2.7s	+1254	+110ms	+18	-4.3s	+230	-6.7s	+233	-259ms	+7	-4.2s	+602	-10.7s	+678	
	10	x1.3	x2.3	x2.0	x37.2	x1.4	x25.0	x1.1	x3.2	x2.9	x40.5	x2.3	x57.0	x1.1	x1.9	x2.1	x13.1	x1.5	x10.5	x1.8	x7.9	x3.9	x195.1	x3.3	x71.6	
	4.0	+52ms	+23	-998ms	+1061	-2.3s	+1105	+14ms	+18	-915ms	+1115	-2.9s	+1696	+106ms	+19	-4.8s	+376	-9.3s	+383	-224ms	+9	-4.2s	+1029	-11.3s	+1109	

- A: An improvement
- T: A deterioration
- ► ▲ ▼: Changes within the same RTT
- •: No significant difference in the 95% confidence intervals

• We can trade little additonal bandwidth for increased performance

If the bandwidth estimate is good!

Results

DSL Fast

- 70kB too few bytes to get close to fairness
- FCT CDFs steeper than slow start
 - Consistent results!
- Overestimations lead to significant loss

• 2MB DSL fast

- Best regular QUIC vs. median blitz-started
- Much better fairness
- Constant over flow's lifetime
- Faster finish

Results

• LTE setting in detail

- Fairness hard to reach
- Large buffers set off the estimate
 - CUBIC will fill the buffers and overestimate the cwnd
- A slight overestimation whould be fine here

Discussion

Initial results look nice but

- Only one flow competes
 - How realistic?
 - Would we still announce the full bandwidth?
- What if multiple flows do this in parallel?
 - We only tested against a single elephant flow
 - What if resources are discovered on a webpage and are then loaded using Blitzstart?
- How do other congestion control algorithms react, e.g., BBR?
- How accurate are the bandwidth estimates that one would get in reality?
 - What if the client lies about her bandwidth? Could a sender detect lies?
 - How well does it fit to a previous connections?
 - Are bandwidth estimates a privacy concern? Could you fingerprint a user?
- Could we use the bandwidth estimate differently?

Conclusion

• We revived an old idea that can easily be deployed with QUIC

- Works well in easy settings
- Yields good fairness and fast transmission times

• Real-world applicability?

- Must be tested with more flows
- When more flows are starting
- How accurate are bandwidth estimates?

• Lots of future work 😊

