
QUIC-FEC: Adding Forward Erasure
Correction to QUIC
Design, implementation and experiments

François Michel, Quentin De Coninck, Olivier Bonaventure
May 7, 2019

UCLouvain, Louvain-la-Neuve, Belgium



Forward Erasure Correction (FEC)

• Sending redundant data (repair symbols) along with the
important data (source symbols), before the source symbols
are marked as lost

• Allows to recover lost data without waiting for retransmissions
• Useful for short transfers or real-time communications in
lossy/high delay scenarios

• Often requires additional bandwidth compared to
retransmissions, because we don’t know which packet will be
lost.

1



A small example

2



A small example

3



Adding Forward Erasure Correction to QUIC: two approaches

Application-based FEC

• Using one or more streams for the application payload
• Using dedicated stream(s) (or datagrams ?) to send the
redundancy

• Only protects the application traffic

Pushes the complexity to the application, but small control on how
the redundancy is packetised

4



Providing FEC at the transport level

• Using separate frames to send the redundancy and user data
• Better control on how the data are packetised
• Can be used by any application
• Can protect more than the application traffic: (flow control
frames, ...)

5



Our work with QUIC and FEC

We worked on a design and implementation of QUIC+FEC to
study the benefits of FEC with QUIC.

• First implementation using quic-go (Google-QUIC)
• Second implementation using picoquic (IETF-QUIC, draft
14)

Our implementations seamlessly allow the use of three different
coding algorithm: XOR, Reed-Solomon and (convolutional)
Random Linear Codes.

6



Defining Source Symbols

FEC protects source symbols by sending redundancy (repair
symbols). We first have to define what are the source symbols.

• It could be stream chunks of equal size (stream-based
protection)

• No overhead but only protects application stream data
• It could be QUIC packets (packet-based protection)

• Additional overhead (ex: stream frames headers), but allows to
protect more than stream data (DATAGRAM frames ?)

We chose the packet-based approach.

7



Sending the repair symbols

We define a new QUIC frame to transport repair symbols, the FEC
frame.

type byte Data Length (15) F Offset (8)

Repair FEC Payload ID (64)

N. S. S. (8) N. R. S. (8)

Repair Symbol Payload
...

Figure 1: Wire format of a FEC frame. The Repair FEC Payload ID field
is opaque to the protocol and is populated by the underlying FEC
Scheme.

8



What to do when recovering a packet ?

• ACKing a recovered packet could send a confusing signal to
the sender: if the loss is due to congestion, the congestion
window won’t be adapted

• Not ACKing a recovered packet would lead to a
retransmission of its content

• We propose to explicitly signal that a packet has been
recovered through a dedicated frame (the RECOVERED
frame)

• Currently, similar format to an ACK frame but announces
which are the recovered packets

9



Some results of our implementations

• Simple request-response use-case with different file sizes,
using Mininet

• We use a seeded loss generator
• Experiment parameters based on in-flight communications1

(high delays, high loss rate)
• Still some non-determinism in the experiments (quic-go uses
several threads)

1Results based on a study of Rula et al.
http://www.cs.northwestern.edu/~jpr123/papers/www-flight.pdf

10

http://www.cs.northwestern.edu/~jpr123/papers/www-flight.pdf


Some results of our implementations

(30, 20) Reed-Solomon code (10 repair symbols for 20 source
symbols)

0.1 0.5 1 2 10
QUIC_FEC/QUIC

0.0

0.5

1.0

CD
F

1kB
10kB
50kB
1MB

11



Some results of our implementations

Small HTTP responses are highly impacted by tail losses. FEC can
help for that kind of request-response use-cases

0.1 0.5 1 2 10
QUIC_FEC/QUIC

0.0

0.5

1.0

CD
F

1kB
10kB
50kB

11



Some results of our implementations

The impact of a tail loss on a larger transfer is small compared to
the total time needed to transfer the additional redundancy

0.1 0.5 1 2 10
QUIC_FEC/QUIC

0.0

0.5

1.0

CD
F

1MB

11



Only protecting the end of the download

• Some early results using picoquic, only protecting the end of
the download, to reduce the negative impact of redundancy

• The quic-go and picoquic results are not directly
comparable in details: the DCT has been computed slightly
differently, the designs are slightly different, ...

12



Only protecting the end of the download

Only protecting the end of the download reduces the negative
impact of FEC. There is still a small control overhead.

0.1 0.5 1 2 10
QUIC_FEC/QUIC

0.0

0.5

1.0

CD
F

1.5 KB
10 KB
50 KB
1 MB

13



Some results of our implementations

We studied how QUIC+FEC behaves when competing with QUIC.

Scenario:

• long bulk download background traffic
• 3 candidates for the background traffic

• Regular QUIC
• QUIC+FEC sending RECOVERED frames when packets are

recovered
• QUIC+FEC simply acknowledging the recovered packets

• We study the Download Completion Time for a regular QUIC
foreground traffic when competing with each of these
background traffics

• No medium losses applied to the communication (the
detected losses are all due to congestion)

14



Some results of our implementations

The RECOVERED frames ensure to avoid being unfair when
competing with regular QUIC flows

Regular With RF Without RF
100

150

Re
gu

la
r Q

UI
C 

DC
T 

(s
ec

on
ds

)

But we may need more experimental results to confirm this 15



Conclusion

• Using packets as source symbols enables the protection of
other frames than STREAM frames (DATAGRAM, ...)

• FEC with QUIC also has an interest for short request-response
scenario

• Recovering packets should be done carefully w.r.t. congestion
control

• We would like to experiment in the wild (also with real-time
use-cases)

16


