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Forward Erasure Correction (FEC)

• Sending redundant data (repair symbols) along with the
important data (source symbols), before the source symbols
are marked as lost

• Allows to recover lost data without waiting for retransmissions
• Useful for short transfers or real-time communications in
lossy/high delay scenarios

• Often requires additional bandwidth compared to
retransmissions, because we don’t know which packet will be
lost.
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A small example
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A small example
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Adding Forward Erasure Correction to QUIC: two approaches

Application-based FEC

• Using one or more streams for the application payload
• Using dedicated stream(s) (or datagrams ?) to send the
redundancy

• Only protects the application traffic

Pushes the complexity to the application, but small control on how
the redundancy is packetised
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Providing FEC at the transport level

• Using separate frames to send the redundancy and user data
• Better control on how the data are packetised
• Can be used by any application
• Can protect more than the application traffic: (flow control
frames, ...)
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Our work with QUIC and FEC

We worked on a design and implementation of QUIC+FEC to
study the benefits of FEC with QUIC.

• First implementation using quic-go (Google-QUIC)
• Second implementation using picoquic (IETF-QUIC, draft
14)

Our implementations seamlessly allow the use of three different
coding algorithm: XOR, Reed-Solomon and (convolutional)
Random Linear Codes.
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Defining Source Symbols

FEC protects source symbols by sending redundancy (repair
symbols). We first have to define what are the source symbols.

• It could be stream chunks of equal size (stream-based
protection)

• No overhead but only protects application stream data
• It could be QUIC packets (packet-based protection)

• Additional overhead (ex: stream frames headers), but allows to
protect more than stream data (DATAGRAM frames ?)

We chose the packet-based approach.
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Sending the repair symbols

We define a new QUIC frame to transport repair symbols, the FEC
frame.

type byte Data Length (15) F Offset (8)

Repair FEC Payload ID (64)

N. S. S. (8) N. R. S. (8)

Repair Symbol Payload
...

Figure 1: Wire format of a FEC frame. The Repair FEC Payload ID field
is opaque to the protocol and is populated by the underlying FEC
Scheme.
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What to do when recovering a packet ?

• ACKing a recovered packet could send a confusing signal to
the sender: if the loss is due to congestion, the congestion
window won’t be adapted

• Not ACKing a recovered packet would lead to a
retransmission of its content

• We propose to explicitly signal that a packet has been
recovered through a dedicated frame (the RECOVERED
frame)

• Currently, similar format to an ACK frame but announces
which are the recovered packets
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Some results of our implementations

• Simple request-response use-case with different file sizes,
using Mininet

• We use a seeded loss generator
• Experiment parameters based on in-flight communications1

(high delays, high loss rate)
• Still some non-determinism in the experiments (quic-go uses
several threads)

1Results based on a study of Rula et al.
http://www.cs.northwestern.edu/~jpr123/papers/www-flight.pdf
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Some results of our implementations

(30, 20) Reed-Solomon code (10 repair symbols for 20 source
symbols)
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Some results of our implementations

Small HTTP responses are highly impacted by tail losses. FEC can
help for that kind of request-response use-cases
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Some results of our implementations

The impact of a tail loss on a larger transfer is small compared to
the total time needed to transfer the additional redundancy
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Only protecting the end of the download

• Some early results using picoquic, only protecting the end of
the download, to reduce the negative impact of redundancy

• The quic-go and picoquic results are not directly
comparable in details: the DCT has been computed slightly
differently, the designs are slightly different, ...
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Only protecting the end of the download

Only protecting the end of the download reduces the negative
impact of FEC. There is still a small control overhead.
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Some results of our implementations

We studied how QUIC+FEC behaves when competing with QUIC.

Scenario:

• long bulk download background traffic
• 3 candidates for the background traffic

• Regular QUIC
• QUIC+FEC sending RECOVERED frames when packets are

recovered
• QUIC+FEC simply acknowledging the recovered packets

• We study the Download Completion Time for a regular QUIC
foreground traffic when competing with each of these
background traffics

• No medium losses applied to the communication (the
detected losses are all due to congestion)
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Some results of our implementations

The RECOVERED frames ensure to avoid being unfair when
competing with regular QUIC flows
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Conclusion

• Using packets as source symbols enables the protection of
other frames than STREAM frames (DATAGRAM, ...)

• FEC with QUIC also has an interest for short request-response
scenario

• Recovering packets should be done carefully w.r.t. congestion
control

• We would like to experiment in the wild (also with real-time
use-cases)
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