
QUIC Tracker

An active test tool for QUIC

Maxime Piraux

May 7, 2019

This work was partially supported by funding from the Walloon Government (DGO6) within the MQUIC project

Complexity of the QUIC specification

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Draft version

0

50

100

150

200

250

300

N
u

m
b

er
of

ap
p

ea
ra

n
ce

s QUIC-T. start

MUST

MUST NOT

SHOULD

SHOULD NOT

Figure 1: Evolution of keywords in draft-ietf-quic-transport.

1

QUIC implementations are evolving rapidly

2018-03

2018-05

2018-07

2018-09

2018-11

2019-01

2019-03

2019-05
0

2

4

6

8

10

12

14

16

18

#
of

en
d

p
oi

n
ts

draft-1
0

draft-1
1

draft-1
2

draft-1
3

draft-1
4

draft-1
5

draft-1
6

draft-1
7

draft-1
8

draft-1
9

draft-2
0

document publication # of endpoints

Figure 2: Evolution of QUIC versions. 2

QUIC implementations are evolving rapidly

2018-03

2018-05

2018-07

2018-09

2018-11

2019-01

2019-03

2019-05
0

2

4

6

8

10

12

14

16

18

#
of

en
d

p
oi

n
ts

draft-1
0

draft-1
1

draft-1
2

draft-1
3

draft-1
4

draft-1
5

draft-1
6

draft-1
7

draft-1
8

draft-1
9

draft-2
0

document publication

of endpoints

draft-08

draft-09

draft-10

draft-11

draft-12

draft-13

draft-14

draft-15

draft-16

draft-17

draft-18

draft-19

draft-20

Figure 2: Evolution of QUIC versions. 2

Contributing to the QUIC effort

• We propose an active test tool called QUIC Tracker.

• It exchanges packets with server implementations to test

them.

• The tool runs daily and its results are public.

3

Results grid

picoquic

quicr

quiche

winquic

mvfst

f5

lsquic

ngtcp2

quant

lsquic

ngxquic

quicker

quicly

Handshake ACKs Streams Migration HTTP/3

Success Failure Error

Figure 3: Results grid on the 2nd of May.

4

QUIC Tracker architecture

Architecture

Implementations

QUIC toolbox

Exchange QUIC packets

over the Internet

Test scenarios

Call

Traces
Produce

Dissector
Reads

Web site

Calls

Implementers

Consult

Figure 4: Tools forming QUIC Tracker.

5

Architecture – QUIC toolbox

Implementations

QUIC toolbox

Test scenarios Traces Dissector

Web site

Implementers

• A library built in Go to implement QUIC clients.

• It provides a high-level API to manipulate QUIC packets.

• It implements all types of connection establishment, streams,

recovery, acknowledgements and HTTP/3.

• The library consists of 5000 lines of code.

6

Architecture – Test scenarios

Implementations

QUIC toolbox

Test scenarios Traces Dissector

Web site

Implementers

• There currently exist 28 test scenarios.

• We derive rules that should not be violated from the

specification.

• Each test is executed in a separate connection.

• Each test targets a particular feature of QUIC.

• A test is 56-line long in average.

7

Architecture – Traces

Implementations

QUIC toolbox

Test scenarios Traces Dissector

Web site

Implementers

• We defined a JSON trace format common to all tests.

• A trace contains an error code summarising its outcome.

• Scenario-specific data can be embedded, e.g. list of supported

versions.

• The exchanged packets are recorded inside the trace.

8

Recent improvements

Recap since EPIQ’18

• draft-20 is supported.

• We are phasing hq-based tests out in favour of HTTP/3.

• Test scenarios development has been further simplified.

• 5 more tests were added.

• Spin bit

• IPv4 → IPv6 migration

• Two HTTP/3 greasing tests

• Client flow control violation

9

Bringing declarative programming to QUIC Tracker

• Declarative programming seems a natural fit for test suites.

• E.g. quic-go uses Gomega for its internal test suite.

10

Bringing declarative programming to QUIC Tracker

v a r f i r s t C r y p t o boo l

f o r , f := range p . Ge tA l l (qt . CryptoType) {
i f f . (∗ qt . CryptoFrame) . O f f s e t == 0 {

f i r s t C r y p t o = t r u e

break ;

}
}

Figure 5: Imperative programming

f i r s t C r y p t o := Expect (p . Ge tA l l (qt . CryptoType))

. To(Conta inE lement (Ma t c hA l l F i e l d s (I g no r eEx t r a s , F i e l d s {
” O f f s e t ” : Equal (u i n t 6 4 (0)) ,

})))

Figure 6: Declarative programming

11

Bringing declarative programming to QUIC Tracker

v a r f i r s t C r y p t o boo l

f o r , f := range p . Ge tA l l (qt . CryptoType) {
i f f . (∗ qt . CryptoFrame) . O f f s e t == 0 {

f i r s t C r y p t o = t r u e

break ;

}
}

Figure 5: Imperative programming

f i r s t C r y p t o := Expect (p . Ge tA l l (qt . CryptoType))

. To(Conta inE lement (Ma t c hA l l F i e l d s (I g no r eEx t r a s , F i e l d s {
” O f f s e t ” : Equal (u i n t 6 4 (0)) ,

})))

Figure 6: Declarative programming

11

Bringing declarative programming to QUIC Tracker

• Declarative programming seems a natural fit for test suites.

• E.g. quic-go uses Gomega for its internal test suite.

• QUIC Tracker is already quite simple.

• There is no clear benefit in switching to declarative

programming.

• Gomega cannot be reused as is in QUIC Tracker.

12

Future prospects

Introduce a DSL for test scripting

• QUIC Tracker is not packetdrill (yet).

• QUIC semantics are far more complex than TCP’s.

• Can we invent a syntax rich enough to express them ?

13

Test QUIC clients

• Advertisements on a popular web site can force clients to

connect to the tool.

• We should be careful not to mess with the clients too much.

• How to distinguish between the clients ?

14

Study the usability of QUIC from different ASNs1

• By using QUIC Tracker from different ASNs, one could map

the usability of QUIC in the Internet.

• UDP blockage or more advanced middleboxes interferences

could be detected using the test scenarios.

• A mobile deployment would help the data gathering.

1https://github.com/QUIC-Tracker/quic-tracker/issues/11

15

Conduct active measurements in the wild

• Several works studied TCP deployment and configuration in

the past

• Similar measurements could be conducted for QUIC

• E.g. measuring the initial congestion window.

16

Using and improving QUIC Tracker

• QUIC Tracker is a free and open-source tool.

• You are encouraged to submit ideas, suggestions and PRs.

• Its development is happening at github.com/QUIC-Tracker.

• quic-tracker.info.ucl.ac.be/blog contains a tutorial on

adding new scenarios.

17

github.com/QUIC-Tracker
quic-tracker.info.ucl.ac.be/blog

	QUIC Tracker architecture
	Recent improvements
	Future prospects

