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Complexity of the QUIC specification
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Figure 1: Evolution of keywords in draft-ietf-quic-transport.
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QUIC implementations are evolving rapidly
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Contributing to the QUIC effort

• We propose an active test tool called QUIC Tracker.

• It exchanges packets with server implementations to test

them.

• The tool runs daily and its results are public.
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Results grid
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Figure 3: Results grid on the 2nd of May.
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QUIC Tracker architecture
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Figure 4: Tools forming QUIC Tracker.
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Architecture – QUIC toolbox
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• A library built in Go to implement QUIC clients.

• It provides a high-level API to manipulate QUIC packets.

• It implements all types of connection establishment, streams,

recovery, acknowledgements and HTTP/3.

• The library consists of 5000 lines of code.
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Architecture – Test scenarios
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• There currently exist 28 test scenarios.

• We derive rules that should not be violated from the

specification.

• Each test is executed in a separate connection.

• Each test targets a particular feature of QUIC.

• A test is 56-line long in average.
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Architecture – Traces
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• We defined a JSON trace format common to all tests.

• A trace contains an error code summarising its outcome.

• Scenario-specific data can be embedded, e.g. list of supported

versions.

• The exchanged packets are recorded inside the trace.
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Recent improvements



Recap since EPIQ’18

• draft-20 is supported.

• We are phasing hq-based tests out in favour of HTTP/3.

• Test scenarios development has been further simplified.

• 5 more tests were added.

• Spin bit

• IPv4 → IPv6 migration

• Two HTTP/3 greasing tests

• Client flow control violation
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Bringing declarative programming to QUIC Tracker

• Declarative programming seems a natural fit for test suites.

• E.g. quic-go uses Gomega for its internal test suite.
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Bringing declarative programming to QUIC Tracker

v a r f i r s t C r y p t o boo l

f o r , f := range p . Ge tA l l ( qt . CryptoType ) {
i f f . ( ∗ qt . CryptoFrame ) . O f f s e t == 0 {

f i r s t C r y p t o = t r u e

break ;

}
}

Figure 5: Imperative programming

f i r s t C r y p t o := Expect ( p . Ge tA l l ( qt . CryptoType ) )

. To( Conta inE lement ( Ma t c hA l l F i e l d s ( I g no r eEx t r a s , F i e l d s {
” O f f s e t ” : Equal ( u i n t 6 4 ( 0 ) ) ,

} ) ) )

Figure 6: Declarative programming
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Bringing declarative programming to QUIC Tracker

• Declarative programming seems a natural fit for test suites.

• E.g. quic-go uses Gomega for its internal test suite.

• QUIC Tracker is already quite simple.

• There is no clear benefit in switching to declarative

programming.

• Gomega cannot be reused as is in QUIC Tracker.
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Future prospects



Introduce a DSL for test scripting

• QUIC Tracker is not packetdrill (yet).

• QUIC semantics are far more complex than TCP’s.

• Can we invent a syntax rich enough to express them ?
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Test QUIC clients

• Advertisements on a popular web site can force clients to

connect to the tool.

• We should be careful not to mess with the clients too much.

• How to distinguish between the clients ?
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Study the usability of QUIC from different ASNs1

• By using QUIC Tracker from different ASNs, one could map

the usability of QUIC in the Internet.

• UDP blockage or more advanced middleboxes interferences

could be detected using the test scenarios.

• A mobile deployment would help the data gathering.

1https://github.com/QUIC-Tracker/quic-tracker/issues/11
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Conduct active measurements in the wild

• Several works studied TCP deployment and configuration in

the past

• Similar measurements could be conducted for QUIC

• E.g. measuring the initial congestion window.
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Using and improving QUIC Tracker

• QUIC Tracker is a free and open-source tool.

• You are encouraged to submit ideas, suggestions and PRs.

• Its development is happening at github.com/QUIC-Tracker.

• quic-tracker.info.ucl.ac.be/blog contains a tutorial on

adding new scenarios.
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