
Understanding QUIC and HTTP/3
with qlog and quicvis

Robin Marx - @programmingart
(Hasselt University – Belgium)

QUIC Symposium – Diepenbeek – May 2019

QUIC and HTTP/3 are quite complex…

▪ V1
▪ Congestion control + loss detection

▪ Fairness issues

▪ Flow control

▪ Encryption and integrity protection

▪ Connection migration

▪ 0-RTT support

▪ Independent streams

▪ Partly re-introduces HOL-blocking in HTTP/3

▪ Low overhead, binary encoding

▪ DoS prevention

▪ Stateless Retry

▪ Retransmission logic

▪ Brings up interesting prioritization questions

▪ …

▪ Postponed to V2
▪ Multipath

▪ Forward error correction

▪ Unreliable data transfer

▪ Support for other crypto besides
TLS 1.3

▪ Most (all?) non-HTTP/3 applications

▪ IoT, realtime media, …

▪ How to expose all of this to
the developer?
▪ E.g., TAPS, WebTransport, …

If QUIC is to become the dominant transport protocol…

▪ Students should learn QUIC basics no later than 3rd bachelor

▪ Researchers should dig deep into all aspects, in specific settings

▪ Application developers should be able to debug behaviour in complex
setups

Right now, in-depth QUIC knowledge resides
with 50 – 100 people worldwide

▪ We need examples

▪ We need documentation

▪ We need tools

https://github.com/rmarx/quicker

Quicker : TypeScript implementation

https://github.com/rmarx/quicker/tree/congestionControl

https://github.com/rmarx/quicker/tree/http3-19

https://github.com/DaanDeMeyer/h3c

https://github.com/DaanDeMeyer/chromium

QUIC tools

not in .pcap

https://quic.edm.uhasselt.be

QUIC logging: The Wild Wild West

Standardized QUIC endpoint logging format

Store

Process

Aggregate

Visualize

Analyze
Share

https://quic.edm.uhasselt.be

Q

Q

Q

Q

Our proposal: qlog

JSON:

• Easy to use in web-based tools (and most programming languages)

• Human-readable

• Minimally verbose while keeping flexibility (vs csv)

qlog : simple to filter (both when reading and writing)

“HTTP_STREAM_OPEN” VS “HTTP”, “STREAM_OPEN”

Also saves on verbosity: akin to csv column names

qlog : clear cause and effect

Mainly when cause of event isn’t clear from context

However, also easier for tooling: focus on certain triggers

 Explicit vs implicit/heuristic logging

qlog : structured metadata

INITIAL 15 1523 VS type=“initial”, nr=15, size=1523

Standardized general purpose endpoint logging format?

▪ Why just for QUIC and HTTP/3?
▪ TCP endpoint states

▪ RTP / WebRTC / DTLS

▪ Anything really…

▪ Wait… doesn’t this exist yet?

▪ Turns out: no…

Current state of tooling and logging

▪ Public

▪ .pcap-based (e.g., tcptrace, wireshark)

▪ In-browser devtools (but very high-level)

▪ Private

▪ Many more proprietary/internal tools

▪ Focused on individual implementation/logging

▪ In many (academic) cases : none

▪ Wrong interpretations of results

▪ Important bugs can remain undetected for a long time

https://github.com/andydavies/http2-prioritization-issues

https://twitter.com/AndyDavies/status/1065916677408346112

https://blog.cloudflare.com/http-2-prioritization-with-nginx/

We seem to rely on a limited amount of (not thoroughly tested)

implementations, which are understood only through their (high-level),

end-to-end behaviour

Standardized general purpose endpoint logging format

▪ Discussed at IETF 104

▪ Too early for its own working group

▪ Use QUIC as incubator / concrete use case

▪ 1. High-level schema

▪ Semi- protocol agnostic

▪ Take into account a
variety of use cases

▪ 2. QUIC + H3 event definitions

▪ Names + metadata semantics
for each type of event

▪ Later also:
▪ Method of access

▪ Security and privacy considerations

https://quiclog.github.io/internet-drafts/draft-marx-quic-logging-main-schema.html

https://quiclog.github.io/internet-drafts/draft-marx-quic-logging-event-definitions.html

High-level logging schema

▪ Main tenets

▪ Flexibility in the format, complexity in the tooling

▪ Extensible but pragmatic (e.g., no complex fixed schema with
extension points)

▪ Streamable, event-based

▪ Aggregation and transformation friendly

▪ Explicit and human-readable

1. Flexibility : included fields depend on use case

common_fields

• Value listed once in header

event_fields

• Value listed separately for each event

instance

Fields are now more dynamic

• Depend on use case

• Split in per-event and shared fields

1. Flexibility : mingle different types of log together

1. Flexibility : file size optimization

Reference-by-index
• Smaller files, less readability

• Could be done for any field

• Done in Chromium’s internal format Netlog

https://github.com/quiclog/internet-drafts/issues/8

1. Flexibility : file size optimization to the extreme

https://github.com/quiclog/internet-drafts/issues/8

1. Flexibility : file size optimization to the extreme

“Fully self-describing format”

https://github.com/quiclog/internet-drafts/issues/8

 Extensible,

but pragmatic

2. Streamability

▪ “Live debugging” : tool updates as events come in

▪ JSON is not a streamable format per se

▪ “Solution”: streaming JSON parser

These two characters are apparently pretty important

Easy enough to

stream individual

events

https://github.com/quiclog/internet-drafts/issues/2

3. Aggregation friendly : multiple traces in 1 file

▪ vantage_point

▪ Combine traces from several locations for end-to-end overview

▪ Also possible: split out per protocol, per flow, type of event, …
▪ e.g., trace 1 = HTTP/2 from server, trace 2 = TCP from eBPF

qlog file

Trace 1

QUIC_HTTP3

CLIENT

Trace 2

QUIC_HTTP3

NETWORK

cache server

Trace 3

QUIC_HTTP3

NETWORK

edge server

Trace 4

QUIC_HTTP3

SERVER

origin

3. Aggregation friendly : Tooling support

Immediately clear

what other person

should be looking at

Quickly sift through

hundreds of logs

(put on top +

streaming parser)

4. Transformation friendly

▪ “No one is going to output qlog directly”

▪ Liar! But even then: they don’t need to

▪ “common logging format” “common tool input format”

Q

Q

netlog2qlog

cf2netlog

firefox2qlog

https://quic.edm.uhasselt.be/qtr-to-qlog/

https://github.com/quiclog/pcap2qlog

Many more open questions

▪ Textual vs binary (readability vs file size savings/logging perf)

▪ Are separate triggers useful?

▪ Preventing proliferation of someting2qlog converters?

▪ Fine-grainedness of events

▪ Privacy aspects

▪ Single format for many use cases?

▪ Even within QUIC: CDN vs Facebook app vs browsers vs IoT vs …

▪ Why doesn’t this exist yet?

Many more open questions

▪ Textual vs binary (readability vs file size savings/logging perf)

▪ Are separate triggers useful?

▪ Preventing proliferation of someting2qlog converters?

▪ Fine-grainedness of events

▪ Privacy aspects

▪ Single format for many use cases?

▪ Even within QUIC: CDN vs Facebook app vs browsers vs IoT vs …

▪ Why doesn’t this exist yet?

▪ How the hell do you publish papers on this topic?

Let’s talk tools!

DEMO TIME

Also plenty of open questions about tools

▪ How to handle overlapping data?

▪ Many small tools vs a few mega-tools?

▪ Truly re-usable and integrate-able tools

▪ More of a software engineering challenge…

▪ Need to know what you are looking for up-front…

▪ Tools that automatically identify problematic areas in a trace?

▪ Tools need to indicate which events they rely on

▪ Chicken or the egg: tools or qlog support?

▪ Which tools would you use? (which do you use today?)

QUIC visualization: bug/behaviour examples
Extra slides / potential question support

QUICvis examples : connectivity lost

QUICvis examples :
Duplicate packet nr

QUICvis : Flow and congestion control logic

QUICvis : Flow and congestion control logic

Sending data along with BLOCKED, going over the limit

Client sends erroneous

flow control allowances

Server sends BLOCKED,

accompanied by STREAM,

going over the max_data

Keep sending data VS flood of BLOCKED

Server retransmits too much, client answers to each blocked

Pacing (network, not server)

Server sends all at once

Client and network see very spaced-out

Pacing (server, not network)

Server sends interleaved itself

Server sends all at once at first

Extra slides

QUIC and HTTP/3

▪ Many people will be looking into the behavior

▪ Initial implementations + conformance testing (current stage)

▪ Early and at-scale deployments

▪ Academic research (and teaching!)

▪ Cycle starts over with new features in v2

Many use cases

▪ Debugging

▪ Live deployment

▪ Education

▪ New feature development

▪ Large scale verification

In the wild, things start getting hairy real quick: bufferbloat

Image: https://www.incapsula.com/cdn-guide/glossary/reverse-proxy.html

https://blog.cloudflare.com/http-2-prioritization-with-nginx/

https://github.com/andydavies/http2-prioritization-issues

uncached.js?v=xyz

data.json

picture1.jpg

picture2.jpg

uncached.js?v=xyz

data.json

Origin

Expected:

Actual:

Caching

Standard logging: existing alternatives

▪ HTTP/2 debug state

▪ .json response for .well-known/h2/state

▪ High-level summary of internal h2 state

▪ Poll-based, manually diff changes between states

https://tools.ietf.org/html/draft-benfield-http2-debug-state-01

Low overhead

Coarse grained

Standard logging: existing alternatives

▪ NetLog (Chromium)

▪ .json log of full browser window

▪ Medium-level (no congestion stuff, prioritization, loss, …)

▪ Event-based, one entry for every state change

chrome://net-export

https://netlog-viewer.appspot.com

Finer grained

High overhead

▪ Event correlation to “sources”

▪ Event phase: start, end, none

Standard logging: existing alternatives

▪ quic-trace

▪ .json response (from protocolbuffer)

▪ Low-level (focus on congestion control and loss)

▪ Event-based, one entry for every state change

https://github.com/google/quic-trace

Finer grained

High overhead

▪ Reasons logged explicitly

