
Demo: DebuggingQUICwith qlog andQUICvis
Robin Marx, Peter Quax, Wim Lamotte

{firstname.lastname}@uhasselt.be
Jonas Reynders, Kevin Pittevils
{firstname.lastname}@student.uhasselt.be

Figure 1: The QUICvis timeline-view, showing the parallel transfer of five resources.

1 INTRODUCTIONANDMOTIVATION
QUIC has been called the mother of all web protocols, as it
deeply integrates aspects of TCP (flow control, congestion
control, loss recovery), TLS (handshake, encryption keys) and
HTTP/2 (streams, prioritization) together into one cross-layer
implementation, creating a new reliable transportmechanism
over UDP. QUIC is highly optimized, almost entirely end-to-
end encrypted and, in order to allow the protocol to evolve
quickly, implementations are currently done in user-space.
This, combined with QUIC’s high ambitions, precludes the
re-use of existing codebases, leading to new code for complex
mechanisms (e.g., reliablity, congestion control, encryption
logic, compression, HTTPmapping). Indeed, over 15 of such
new implementations for the IETF’s soon to be standardized
version of QUIC have been announced (https://github.com/
quicwg/base-drafts/wiki/Implementations).
With such a complex undertaking, it is highly likely that

there will be various bugs and unexpected behaviours in the
young QUIC implementations for quite some time to come,
especially sinceadvanced features likeMultipathandForward
Error Correction are not planned until the next version. But
even with flawlessly implemented codebases, much research
and (live) testing will be needed to fine-tune parameters, and
to determine best practices and performance characteristics.
However, QUIC’s complexity precludes straightforward

debugging, testing and evaluation. Tools likeWireshark are a
must for decrypting and deserializing packet traces. Alterna-
tively, one could interpret the (plain text) logging output of
different QUIC implementations, but in our experience they
often do not contain all necessary state information and log-
ging formats are wildly heterogeneous across codebases. All
this makes it more difficult for users to debug and understand
QUIC’s behaviour, and causes significant effort to be required

to make more advanced interactive tools that visualize the
various aspects of the protocol. This is bad, as our experience
researching various HTTP/2 stacks and their behaviours, has
shown that such tools can dramatically reduce debugging
time and greatly aid root cause analysis of bugs and issues.

This work is our attempt to promote the topic of long-term
debuggability and testability ofQUIC to the larger community
and start a discussion. We do this by proposing two items: an
easily deployable common endpoint logging format called
qlog, and a toolset of interactive visualizations calledQUICvis.

2 QLOG
Asexisting logsandpacket capturesaremostlynon-uniformly
formatted and often miss crucial internal state information,
we propose a common endpoint logging format. The main
idea is to logdetails onalmost all events andalso tag themwith
high-level metadata such as category, event-type and trigger
(i.e., the direct cause of this event). This makes it easy to per-
form high-level filtering and to trace event chains. qlog is also
flexible: depending on the use case, security considerations
or overhead allowances, runs could only log a subset of sup-
ported categories, types and data (e.g., when debugging con-
gestion control, detailed HTTP-related information is prob-
ably superfluous). As is the case with the proposed HTTP/2
debugging format from Benfield et al., the logs could be avail-
able at fixed URLs (e.g., http://example.com/.well-known/hq/
state/connid=XYZ and chrome://net-internals/#hq/id=XYZ).
Listing 1 gives a very rough idea of what such a format

could look like. Note that we fully expect the exact format
and types of categories, events etc. to change as our proposal
is discussed and the QUIC specification evolves. We have
implemented a first basic version of qlog and find it achieves
its goals but also adds non-trivial implementation overhead.

1

https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
http://example.com/.well-known/hq/state/connid=XYZ
http://example.com/.well-known/hq/state/connid=XYZ
chrome://net-internals/#hq/id=XYZ


EPIQ ’18, December 4–7, 2018, Heraklion/Crete, Greece R. Marx et al.

Listing 1: Simplified example of the qlog format in JSON, showing a packet being queued due to congestion control
{"connectionid": "0x763f8eaf61aa3ffe84270c0644bdbd2b0d", "starttime": 1543917600,
"fields":

["time","category", "type", "trigger", "data"],
"events": [

[50, "TLS", "0RTT_KEY", "PACKET_RX", {"key": ...}],
[51, "HTTP", "STREAM_OPEN", "PUSH", {"id": 0, "headers": ...}],
...
[200, "TRANSPORT", "PACKET_RX", "STREAM", {"nr": 50, "contents": "GET /ping.html", ...}],
[201, "HTTP", "STREAM_OPEN", "GET", {"id": 16, "headers": ...}],
[201, "TRANSPORT", "STREAMFRAME_NEW", "PACKET_RX", {"id": 16, "contents": "pong", ...}],
[201, "TRANSPORT", "PACKET_NEW", "PACKET_RX", {"nr": 67, "frames": [16, ...], ...}],
[203, "RECOVERY", "PACKET_QUEUED", "CWND_EXCEEDED", {"nr": 67, "cwnd": 14600, ...}],
[250, "TRANSPORT", "ACK_NEW", "PACKET_RX", {"nr": 51, "acked": 60, ...}],
[251, "RECOVERY", "CWND_UPDATE", "ACK_NEW", {"nr": 51, "cwnd": 20780, ...}],
[252, "TRANSPORT", "PACKET_TX", "CWND_UPDATE", {"nr": 67, "frames": [16, ...], ...}],
...
[1001, "RECOVERY", "PACKET_NEW", "EARLY_RETRANS", {"nr": x, "frames": ...}],
[2002, "RECOVERY", "PACKET_NEW", "TAIL_LOSS_PROBE", {"nr": y, "frames": ...}],
[3003, "RECOVERY", "PACKET_NEW", "TIMEOUT", {"nr": z, "frames": ...}]

]}

Figure 2: The QUICvis sequence diagram. ACK-only
packets not shown for clarity.

As such,we contemplate startingworkonanopen source qlog
library with bindings for various programming languages.

3 QUICVIS
Working directly from textual formats or packet listings can
be inefficient and error-prone, especially when comparing
various (long) traces. Interactive visual tools can help in de-
bugging, as they canhide superfluous detail, allowing the user
to focus on the context at hand. For instance, one tool can al-
low fast discovery of a problematic area in a trace, after which
another tool can help in root cause analysis of that problem.
In QUICvis, we have implemented three such visualizations:
• Timeline (Figure1):Allows for abird’s-eyeoverviewof the
trace and also supports zooming, panning and highlighting
to interactively reveal more details. Different traces can
easily be compared by stacking them vertically.

• Sequence diagram (Figure 2): Visualizes data flow be-
tween two endpoints. When combining two logs (client
and server side), we can show RTT, loss, re-transmits and
reordering (crossing lines, Figure 2 X ) very accurately.

• Congestion control/flow control graph (Omitted due
to space considerations, visible on our website below): In-
spired by tcptrace’s time-sequence diagram, this graph al-
lows tracking of congestion parameters and (per-stream)
flow control and data flow. Using endpoint logs, we plot
internal state not gleaned from packet captures.

We have evaluated these visualizations by running confor-
mance tests on three WIP QUIC implementations (i.e., our
own Quicker codebase, Quant and Ngtcp2). Processing the
results was fast andwe rapidly identified various bugs (e.g., in
Figure 2, a duplicate packet number occurence is erroneously
answered with a CONNECTION_CLOSE, which is itself re-
peated in four packets having the exact same packet number).
Complex behaviour such as flow control was also clearly iden-
tifiable (e.g., in Figure 1, blue data frames per streamare halted
until reception of a purple MAX_STREAM_DATA update).

4 DEMOCONTENTS
Our demo will mainly showcase live versions of the QUICvis
tools, primarily on previously captured traces of at least three
IETF QUIC implementations containing interesting bugs or
behaviour, and possibly on traces live-captured at the event.
We hope to have meaningful discussions on which visual-
izations are most useful and also on the proper shape and
usage of the qlog format. Note that, as we plan to continue
development on QUICvis and qlog, there is a high chance
that we will have additional visualizations implemented and
demonstrable by December. Our current and future work
is open source and can be assessed as web-based demos at
https://quic.edm.uhasselt.be.
Besides table space, a power outlet and WLAN connec-

tivity, an additional (HDMI) screen or projector would be
appreciated for the demo.

2

https://quic.edm.uhasselt.be

	1 Introduction and Motivation
	2 qlog
	3 QUICvis
	4 Demo contents

